Сиддхартха Мукерджи – Ген. Очень личная история (страница 40)
И это действительно был магний. Он оказался критически важным: в растворе с добавлением его ионов рибосома оставалась целой, и Бреннеру с Жакобом наконец удалось выделить из бактериальных клеток мизерное количество молекулы-посредника[545]. Как и ожидалось, это была РНК[546] – но РНК особого типа[547]. Она производилась всякий раз при экспрессии гена и, подобно ДНК, строилась путем сборки в цепочку нуклеотидов с одним из четырех оснований – А, Г, Ц и У (вместо Т, характерного для ДНК). Что примечательно, Бреннер и Жакоб позже обнаружили, что матричная РНК – это
Все это напоминало процесс перевода книг в библиотеке редких изданий. Оригинальный источник информации (ген) постоянно находится где-то в недрах хранилища. Когда от клетки поступает «запрос на перевод», из ядерного хранилища наружу посылается фотокопия оригинала. Это факсимиле гена (РНК) – рабочий экземпляр для
Но транскрипция решала задачу синтеза белка только наполовину. Оставалась другая: перекодирование информации из РНК-послания в белок. Чтобы создать РНК-копию гена, клетка использует довольно простое правило переноса: каждый А, Ц, Т и Г в гене соответствует А, Ц, У и Г в матричной РНК (например, АЦТ ЦЦТ ГГГ → АЦУ ЦЦУ ГГГ). Единственное отличие РНК-копии от оригинального гена – замена тимина на урацил (Т → У). Но как же генетическая информация после перевода в РНК перекодируется в белок?
Уотсон и Крик сразу поняли, что ни одно основание по отдельности – А, Ц, Т или Г – не может нести достаточно генетической информации для построения какой бы то ни было части белка. Ходовых аминокислот в общей сложности 20, а четыре буквы поодиночке никак не могут определять 20 альтернативных вариантов. Секрет, видимо, крылся в комбинациях оснований. «Похоже, определенная
Эту мысль можно проиллюстрировать на примере естественного языка. Буквы К, Т и О сами по себе несут мало смысла, но их можно скомбинировать несколькими способами и получить «послания» с заметно разными значениями. Здесь смысл тоже определяется последовательностью: скажем, слова
Представим в виде схемы:
В серии остроумных экспериментов Крик и Бреннер выяснили, что генетический код наверняка «триплетен»:
Но какой триплет какую аминокислоту кодирует? К 1961 году за разгадку генетического кода боролись уже несколько лабораторий из разных стран. В Национальном институте здоровья в Бетесде Маршалл Ниренберг, Генрих Маттей и Филип Ледер пытались взломать код с помощью биохимического подхода. Химик индийского происхождения Хар Корана получил необходимые для этого реагенты. А в Нью-Йорке биохимик-испанец Северо Очоа параллельно начал сопоставлять триплетные кодоны с аминокислотами.
Как и при любом взламывании кода, процесс продвигался путем проб и ошибок. Сначала казалось, что триплеты перекрываются друг с другом – и это убивало надежду на простоту кода. Потом какое-то время считали, что есть вообще не работающие триплеты. Но к 1965 году все эти исследования – и в особенности работа группы Ниренберга – дали результат: для каждой аминокислоты удалось найти триплет ДНК, который ее кодирует. Например, АЦТ кодирует треонин, ЦАТ – гистидин, ЦГТ – аргинин. Таким образом, на основе последовательности ДНК – например, АЦТ ГАЦ ЦАЦ ГТГ – выстраивается цепь РНК, а она, в свою очередь, транслируется в цепь аминокислот, в конечном счете формирующую белок. Оказалось, что один триплет (АТГ) сигнализирует о начале синтеза белка, а три других (ТАА, ТАГ, ТГА) – о его остановке. Базовый генетический алфавит и принципы генетического кодирования наконец были установлены.
Поток информации в клетке легко изобразить:
Или концептуально:
Или конкретнее:
Фрэнсис Крик назвал этот поток
Пожалуй, ни одна болезнь не проиллюстрирует природу информационного потока и глубину его влияния на человеческую физиологию лучше, чем серповидноклеточная анемия. Уже в VI веке до н. э. практикующие Аюрведу индийцы распознавали анемию – дефицит нормальных красных кровяных клеток – по важнейшему симптому: бледности губ, кожи и пальцев. Анемии на санскрите называли
В 1904 году одна увиденная в микроскоп картина[552] раскрыла единую причину всех этих, казалось бы, разрозненных симптомов. В тот год в Чикаго юный студент-стоматолог Уолтер Ноэль предстал перед своим врачом с анемическим кризом, который сопровождался характерной болью в груди и конечностях[553]. Ноэль был родом с Карибских островов, имел западноафриканские корни и за прошедшие годы успел пережить несколько таких эпизодов. Исключив сердечный приступ, кардиолог Джеймс Херрик решил скинуть этот случай на какого-нибудь ординатора. Фортуна указала на Эрнеста Айронса. По странной прихоти тот решил взглянуть на кровь Ноэля под микроскопом.
И Айронс увидел нечто ошеломляющее. Нормальные эритроциты имеют форму вогнутых по центру дисков, благодаря чему могут складываться в стопки и легко путешествовать по сети артерий, капилляров и вен, доставляя кислород в печень, сердце и мозг. Однако клетки в крови Ноэля загадочным образом превратились в сморщенные полумесяцы или серпы – стали «серповидными», как позже описал их Айронс.
Но что заставило красные кровяные клетки принять форму серпа? И почему эта болезнь передается по наследству? Виновником оказалось врожденное нарушение в гене гемоглобина – белка, который переносит кислород и содержится в эритроцитах в больших количествах. В 1951 году Лайнус Полинг, работая в Калтехе[554] вместе с Харви Итано, показал, что в серповидных клетках содержится вариант гемоглобина, отличный от гемоглобина нормальных клеток. Пять лет спустя ученым из Кембриджа удалось уточнить отличие полипептидных цепочек такого варианта гемоглобина от нормального: это была замена всего одной аминокислоты[555].
Но если белок отличается единственной аминокислотой, то в гене должен быть изменен всего один триплет («один триплет кодирует одну аминокислоту»). Это предположение позже подтвердилось. Когда ген бета-глобина (β-цепи гемоглобина) нашли и «прочитали» у здоровых и больных серповидноклеточной анемией, у последних обнаружили замену всего одного триплета: ГАГ на ГТГ. Из-за этого в β-цепи одна аминокислота, глутамат, замещается другой, валином. Такое изменение приводит к тому, что цепи гемоглобина сворачиваются по-другому: вместо аккуратных, изящных структур, похожих на застежку, мутантные белки[556] сбиваются внутри эритроцитов в цепочки. Эти цепочки, особенно при дефиците кислорода, вырастают настолько длинными, что деформируют мембрану эритроцита, и нормальный диск постепенно превращается в искривленную серповидную клетку. Такие клетки уже не могут легко проскальзывать через капилляры и вены и в разных частях тела сбиваются в микросгустки, нарушая кровоток и вызывая приступы мучительной боли.