Сиддхартха Мукерджи – Ген. Очень личная история (страница 39)
Плодовые мушки преобразовали генетику благодаря редким мутантам. Именно из-за своей редкости мутанты напоминали лампы в темноте: они позволяли биологам отслеживать, как выразился Морган, «действие гена» в поколениях[531]. Это «действие» – все еще туманное, мистическое понятие – заинтриговало Бидла. В конце 1930-х Бидл и Тейтем решили, что выделение реального пигмента из глаз дрозофил может вести к разгадке «действия генов». Но работа застопорилась: связь между генами и пигментами оказалась слишком сложной, чтобы породить рабочую гипотезу. В 1937-м в попытке связать ген с признаком они перешли на еще более простой организм – красную хлебную плесень
Плесневые грибы, живущие на хлебе, – цепкие и агрессивные создания. Их можно выращивать на чашках Петри с богатой питательными веществами средой, но на самом деле им, чтобы выжить, много не надо. Одно за другим убирая из богатой среды питательные вещества, Бидл обнаружил, что штаммы нейроспоры жили даже на минимальной среде с добавлением всего двух компонентов – сахара и витамина под названием биотин. Очевидно, клетки плесени могли строить все молекулы, необходимые для выживания, из базовых веществ: липиды – из глюкозы, ДНК и РНК – из их химических предшественников, сложные углеводы – из простых сахаров. Настоящее чудо из «Чудесного хлеба»[532].
Бидл догадался, что эта способность обусловлена присутствием в клетках плесени ферментов – белков, работающих главными строителями и умеющих синтезировать сложные биологические макромолекулы из базовых предшественников. Чтобы хлебная плесень успешно росла на минимальной среде, все метаболические механизмы, все пути построения молекул должны работать нормально. Если мутация повредит хотя бы один из них, плесень не сможет расти, пока недостающий ингредиент не вернут в среду. Бидл и Тейтем, таким образом, могли использовать эту технологию для отслеживания отключения метаболических функций у каждого мутанта: если мутанту необходимо для роста на минимальной среде вещество X, это значит, что у него нет какого-то фермента для синтеза этого вещества с нуля. Этот подход был чрезвычайно трудоемким, но терпение оказалось тем достоинством, которого Бидлу было не занимать: однажды он полдня учил аспиранта мариновать стейк, добавляя строго по одной специи через строго определенные промежутки времени.
Эксперимент с «недостающим ингредиентом» подтолкнул Бидла и Тейтема к новому осмыслению генов. Они заметили, что у каждого мутанта нарушена какая-то одна метаболическая функция, связанная с активностью одного белка-фермента. А скрещивания показали, что каждый мутант дефектен по единственному гену.
Но если мутация нарушает функцию фермента, значит, нормальный ген должен нести информацию о производстве нормального фермента. Единица наследственности должна хранить код для реализации метаболической или клеточной функции, которую выполняет белок. «Можно представить это так, – писал Бидл в 1945 году. – Ген определяет итоговую конфигурацию[533] молекулы белка». Это было то самое «действие гена», суть которого пыталось раскрыть целое поколение биологов: это действие заключается в
Или в терминах потока информации:
За свое открытие Бидл и Тейтем в 1958 году получили Нобелевскую премию, но все еще оставался нерешенным важнейший вопрос, который поднял их эксперимент: каким образом ген кодирует информацию для построения белка? Белок составляется из 20 наименований простых веществ – аминокислот (метионина, глицина, лейцина и так далее), которые выстраиваются в цепочку. В отличие от цепочки ДНК, находящейся в клетке главным образом в форме двойной спирали, цепочка белка может по-разному изгибаться и сворачиваться в пространстве, как проволока, которой придают любую уникальную форму. Эта способность принимать специфическую форму позволяет белкам выполнять множество разных функций.
Одни из них могут существовать в виде длинных эластичных волокон в мышцах (миозин). Другие могут иметь форму шара и запускать химические реакции (ферменты вроде ДНК-полимеразы). Третьи – связываться с окрашенными веществами и служить пигментами глаза или цветка. Четвертые – сворачиваться наподобие застежки и переносить другие молекулы (гемоглобин). Пятые – определять характер общения одной нервной клетки с другой, а значит, управлять развитием нервной системы и состоянием когнитивных функций.
Но как последовательность ДНК вроде АТГЦЦЦЦ… может нести информацию о построении белка? Уотсон всегда подозревал, что закодированная в ДНК информация сначала преобразуется в какое-то промежуточное сообщение. Эта «молекула-переносчик», как он ее назвал, передает инструкции для построения белка, зашифрованные в гене. В 1953 году он написал: «Больше года я твердил Фрэнсису[535] [Крику], что с генетической информации, содержащейся в цепочках ДНК, сначала должны сниматься копии в форме комплементарных молекул РНК», а уже молекулы РНК должны использоваться как инструкции для построения белка.
В 1954 году Георгий Гамов, физик русского происхождения, ставший биологом, вместе с Уотсоном основал «клуб» ученых для раскрытия механизма синтеза белка. «Дорогой Полинг, – писал Гамов Лайнусу Полингу в 1954-м, по своему обыкновению вольно обращаясь с грамматикой и орфографией. – Я играю со сложными органическими молекулами[536] (чего раньше никогда не делал!) и получаю кое-какие занятные результаты и хотел бы твое мне
Гамов назвал объединение «Клуб галстуков РНК»[537]. «Клуб никогда не собирался в полном составе, – вспоминал Крик, – его существование всегда было довольно условным»[538]. Клуб не устраивал регулярных формальных встреч, не утверждал каких-либо правил и даже базовых принципов организации, он в свободной манере держался скорее на неформальных беседах. Собрания случались спонтанно или не случались вообще. В клубе ходили по рукам записи с порой сумасбродными неопубликованными идеями, с набросанными от руки иллюстрациями – это был блог до блогов. Уотсон в Лос-Анджелесе попросил портного вышить золотистой нитью на темно-зеленых шерстяных галстуках РНК-спираль. Гамов послал по такому галстуку и булавке к нему[539] каждому из приятелей, кого решил пригласить в клуб, а также напечатал клубные бланки со своим девизом: «Сделай или умри, или вовсе не начинай»[540].
В середине 1950-х в Париже двое специалистов по генетике бактерий – Жак Моно и Франсуа Жакоб – провели эксперименты, результаты которых намекали, что для «преобразования» ДНК в белок нужна промежуточная молекула[541] – переносчик информации. Ученые тоже предположили, что гены не напрямую предоставляют инструкции для построения белков. Куда вероятнее, информация из ДНК сначала копируется – сохраняется в виде своеобразного черновика, – а затем именно эта копия, не оригинал, переводится на язык белка.
В апреле 1960 года Фрэнсис Крик и Франсуа Жакоб встретились в тесной кембриджской квартирке Сиднея Бреннера, чтобы обсудить природу этого загадочного посредника. Сын сапожника из Южной Африки, Бреннер получил стипендию и приехал в Англию изучать биологию; подобно Уотсону и Крику, он был зачарован «религией генов» и ДНК. Едва переварив ланч, трое ученых сообразили, что эта промежуточная молекула должна курсировать из клеточного ядра, где хранятся гены, в цитоплазму, где синтезируются белки.
Но какова химическая природа «послания», которое строится на основе гена? Это белок, нуклеиновая кислота или молекула другого типа? Как ее структура связана с последовательностью нуклеотидов? Хотя конкретных подтверждений тому не было, Бреннер и Крик подозревали, что это РНК – молекулярная двоюродная сестра ДНК. В 1959-м Крик посвятил Клубу галстуков стишок, но так и не разослал его коллегам:
Той же весной Жакоб прилетел в Калтех, чтобы поработать с Мэттью Мезельсоном и таки поймать «окаянного Пимпернеля». Через несколько недель, в начале июня, прибыл и Бреннер. Они с Жакобом знали, что белки производятся внутри клетки специализированными органеллами –
Принцип казался простым и очевидным, но сам эксперимент ученых обескуражил. Поначалу Бреннер доложил, что эксперимент явил ему лишь химический эквивалент густого «калифорнийского тумана – сырого, холодного и безмолвного». Недели ушли на совершенствование прихотливой биохимической системы. Но рибосомы всякий раз при выделении распадались. Внутри клетки их части спокойно пребывали в «склеенном» виде. Так почему же снаружи они растворялись, словно туман, ускользающий сквозь пальцы?
Однажды ответ вышел из тумана. Буквально. Как-то утром Бреннер и Жакоб сидели на пляже. Бреннер размышлял над своими лекциями по основам биохимии и вдруг осознал до смешного простой факт: в их растворах могло не хватать необходимого химического фактора, который отвечал за целостность рибосом внутри клеток. Но что это за фактор? Это явно что-то маленькое, тривиальное и вездесущее – крохотная капля молекулярного клея. Бреннер внезапно вскочил. Его крик пронзил утренний туман: «