Сиддхартха Мукерджи – Ген. Очень личная история (страница 23)
Чтобы понять значение открытия Моргана, вернемся к Менделю. В его экспериментах гены вели себя как независимые сущности, свободные агенты. Между, скажем, окраской цветков, текстурой семян и высотой стеблей не прослеживалось никакой связи. Все признаки наследовались независимо и встречались в любых комбинациях. Каждое скрещивание, таким образом, было настоящей генетической рулеткой: скрестив высокое растение с пурпурными цветками и низкое с белыми, вы получали все возможные сочетания – высокие растения с белыми цветками, короткие с пурпурными, и так далее.
Однако у Моргана гены дрозофил не всегда вели себя независимо. С 1910 по 1912 год он и его студенты скрестили тысячи мутантов, получив десятки тысяч их потомков. Результаты каждого скрещивания тщательно протоколировали: белые глаза, черное тело, короткие крылья, загнутые щетинки. Изучая гибридизационные таблицы, которыми были заполнены уже десятки тетрадей, Морган заметил неожиданную закономерность: некоторые гены вели себя как «сцепленные» друг с другом. Например, ген, отвечающий за формирование белых глаз («белоглазый»,
Для Моргана это генетическое сцепление означало лишь одно: гены
Морган открыл важную поправку к законам Менделя: гены передаются не по отдельности, а комплектами. То есть пакеты информации сами тоже упакованы – в хромосомы и, наконец, в клетки. Даже важнее, чем само открытие, было его следствие: Морган связал не только гены, он концептуально связал две дисциплины – клеточную биологию и генетику. Ген перестал восприниматься «чисто теоретической единицей». Он оказался материальным
Установление связи между генами привело ко второму и к третьему открытиям. Но вернемся к сцеплению: эксперименты Моргана позволили установить, что сцепленные в составе одной хромосомы гены наследуются совместно. Если ген, отвечающий, допустим, за голубой цвет глаз, сцеплен с геном светлых волос, то дети-блондины неминуемо будут голубоглазыми (пример гипотетический, но принцип, который он иллюстрирует, абсолютно реален).
Однако наблюдали и исключения из закона сцепления: иногда – очень редко – ген мог отцепиться от своих соседей и переместиться, например, с отцовской хромосомы на такую же материнскую. В нашем примере это означало бы исключительно редкое рождение голубоглазых и темноволосых или, напротив, кареглазых и светловолосых детей. Морган назвал этот феномен
Последнее открытие, основанное на работе Моргана, тоже родилось в практическом исследовании кроссинговера. Некоторые гены были так прочно связаны, что кроссинговером никогда не разделялись. Студенты Моргана предположили, что такие гены на хромосоме расположены особенно близко друг к другу. Остальные гены, хоть и тоже сцепленные, разделялись чаще. Значит, между ними расстояние на хромосоме должно быть больше. Ну а не сцепленные гены должны располагаться на разных хромосомах. Словом, прочность генетической связи определяется физической близостью генов на хромосоме: оценив, как часто два признака – светлые волосы и голубые глаза – наследуются совместно, можно измерить расстояние между генами этих признаков.
Зимним вечером 1911 года тогда еще 20-летний Альфред Стёртевант захватил с собой в общежитие экспериментальные данные по сцеплению генов дрозофилы и вместо выполнения задания по математике всю ночь корпел над первой генетической картой мушки. Если ген A прочно сцеплен с B и слабо – с C, то эти гены, как рассудил Стёртевант, должны располагаться на хромосоме вот в таком порядке и на таком относительном расстоянии друг от друга:
A. B……….C.
Если аллель, ответственный за зубчатые крылья, часто наследуется вместе с аллелем, определяющим развитие коротких щетинок, то гены этих двух признаков должны находиться на одной хромосоме, а ген цвета глаз, который передается независимо, – на другой. К концу ночи Стёртевант набросал первую в истории линейную генетическую карту: она отражала расположение полудюжины генов на хромосоме дрозофилы.
Та примитивная карта Стёртеванта стала предпосылкой для гигантской и кропотливой работы по картированию человеческого генома в 1990-х. Устанавливая относительное расположение генов на хромосомах по характеру сцепления, Стёртевант подготовил почву для будущего клонирования генов, связанных с многофакторными семейными заболеваниями вроде рака груди, шизофрении или болезни Альцгеймера. Примерно за 12 часов в комнате нью-йоркского студенческого общежития был залит фундамент проекта «Геном человека».
С 1905 по 1925 год Мушиная комната Колумбийского университета была настоящим эпицентром генетики, каталитической камерой новой науки. Сродни расщепленным атомным ядрам, идеи множились, отталкиваясь от других идей и порождая зачатки новых. Цепная реакция открытий – сцепление генов, кроссинговер, линейность генетических карт, расстояние между генами – была такой бурной, что генетика, казалось, не рождалась, а прямо-таки молниеносно врывалась в мир. В следующие десятилетия на обитателей лаборатории посыпятся Нобелевские премии: Морган, его студенты, студенты его студентов и даже их студенты – все получат награду за свои открытия.
Но, несмотря на успехи со сцеплением и картированием, Морган мучительно пытался вообразить и описать ген в его материальной форме: какое химическое вещество могло бы переносить информацию в виде «нитей» и «карт»? Вот яркое свидетельство способности ученых довольствоваться абстракциями: 50 лет после публикации статьи Менделя – с 1865-го по 1915-й – биологи знали гены только по их проявлениям: гены определяют развитие признаков, они могут мутировать и потому кодировать альтернативные варианты признаков, гены в той или иной степени связаны друг с другом физически или химически[321]. Смутно, будто сквозь пелену, перед биологами проступали закономерности и основные образы: нити, цепочки, карты, перекресты, прерывистые и непрерывные линии, хромосомы, переносящие закодированную и сжатую информацию. Но никто не видел ген в действии и не знал, что он из себя представляет физически. Главный объект науки о наследственности, оставаясь невидимкой, лишь издевательски манил ученых играми теней.
Если морские ежи, хрущаки и плодовые мушки казались такими далекими от мира людей, если реальная значимость открытий Моргана и Менделя всегда была под вопросом, то события жестокой весны 1917 года не оставили сомнений в обратном. В марте того года, пока Морган в своей Мушиной комнате писал статьи о генетическом сцеплении, по России прокатилась волна беспощадных народных восстаний, которая обезглавила монархию и вознесла к вершинам власти большевиков.
Казалось бы, что может связывать гены и революцию в России? Первая мировая война ввергла голодное, измученное население в смертоносное неистовство недовольства. Царя считали слабым и бесполезным. Армия бунтовала, рабочие бастовали, инфляция зашкаливала. В марте 1917 года Николая II вынудили отречься от престола. Но гены – и их сцепление – в этой истории играли роль катализатора. Русская царица Александра приходилась внучкой английской королеве Виктории[322], от которой в наследство получила не только точеный нос и фарфоровое сияние кожи, но и ген гемофилии B, смертельной болезни крови. У потомков Виктории наблюдалось крисс-кросс наследование[323] этого заболевания.
Гемофилию вызывает единственная мутация, которая выводит из строя один из белков, участвующих в свертывании крови. Без него не образуется кровяной сгусток, и даже небольшая рана может обернуться потенциально смертельной кровопотерей. Название болезни – от греческих слов
Генетическое заболевание гемофилия, как и белые глаза у плодовых мушек, – признак, сцепленный с полом. Женщины могут быть его носителями и передавать ген по наследству, но страдают от заболевания, как правило, мужчины[324]. Мутация, приводящая к гемофилии, вероятнее всего, спонтанно возникла у самой королевы Виктории, если говорить о ее династии. Восьмой ребенок королевы, Леопольд, унаследовал этот ген и умер от кровоизлияния в мозг в возрасте 30 лет. Кроме того, мутантный ген передался от Виктории второй дочери, Алисе, а от Алисы – ее дочери, русской императрице Александре.