реклама
Бургер менюБургер меню

Ян Лекун – Как учится машина. Революция в области нейронных сетей и глубокого обучения (страница 3)

18px

Надежность MYCIN (и ее преемников) была довольно неплохой. Но они так и не вышли за рамки эксперимента. Компьютеризация в медицине тогда только зарождалась, а процесс ввода данных был утомительным. В конце концов, все эти экспертные системы, основанные на логике и деревьях поиска, оказались слишком тяжелыми и сложными в разработке. Они вышли из употребления, но остаются эталоном и продолжают описываться в учебниках по искусственному интеллекту.

Тем не менее работа над логикой привела к появлению некоторых важных приложений: к символьному решению уравнений и исчислению интегралов в математике, а также к автоматической проверке программ. Например, с его помощью компания Airbus проверяет точность и надежность своего программного обеспечения для управления пассажирскими самолетами.

Часть исследовательского сообщества ИИ продолжает работать над этими темами. Другие специалисты, к которым принадлежу и я, посвятили себя совершенно другим подходам, основанным на машинном обучении.

… или же машинное обучение?

Рассуждения – это лишь малая часть человеческого разума. Мы часто думаем по аналогии, мы действуем интуитивно, опираясь на представления о мире, постепенно приобретаемые через опыт. Восприятие, интуиция, опыт, наборы усвоенных навыков – все это результат обучения.

В таких условиях, если мы хотим построить машину, интеллект которой будет приближен к человеческому, мы должны сделать ее тоже способной к обучению. Человеческий мозг состоит из 86 млрд взаимосвязанных нейронов (или нервных клеток), 16 млрд из которых находятся в коре головного мозга. В среднем каждый нейрон образует почти 2000 других соединений с другими нейронами – так называемых синапсов. Обучение происходит путем создания синапсов, удаления синапсов или изменения их эффективности. Поэтому, используя самый известный подход к машинному обучению, мы создаем искусственные нейронные сети, процесс обучения которых изменяет связи между нейронами. Приведем несколько общих принципов.

Машинное обучение включает первый этап обучения или тренировки, когда машина постепенно «учится» выполнять задачу, и второй этап – реализацию – когда машина закончила обучение.

Чтобы научить машину определять, содержит ли изображение автомобиль или самолет, мы должны начать с представления ей тысяч изображений, содержащих самолет или автомобиль. Каждый раз, когда на входе системе дается изображение, нейронная сеть (или «нейросеть»), состоящая из соединенных между собой искусственных нейронов (в действительности – это множество математических функций, вычисляемых компьютером), обрабатывает это изображение и выдает выходной ответ. Если ответ правильный, мы ничего не делаем и переходим к следующему изображению. Если ответ неверный, мы немного корректируем внутренние параметры машины, то есть силу связей между нейронами, чтобы ее выходной сигнал приближался к желаемому ответу. Со временем система настраивается и в конечном итоге сможет распознать любой объект, будь то изображение, которое она видела ранее, или любое другое. Это называется способностью к обобщению.

Сравнение этой способности нейросетей с соответствующими функциями мозга говорит о том, что машинам до нас еще далеко. Приведем некоторые цифры. В мозге 8,6·1010 нейронов, связанных между собой примерно 1,5·1014 синапсами. Каждый синапс может выполнять «вычисление» сотни раз в секунду. Данный синаптический расчет эквивалентен сотне цифровых операций на компьютере (умножение, сложение и т. д.) или 1,5·1018 операций в секунду для всего мозга, хотя в действительности лишь часть нейронов активна в любой момент времени. Для сравнения, карта GPU (графического процессора) может выполнять 1013 операций в секунду. Чтобы приблизиться к мощности мозга, потребуется 100 000 видеокарт. И тут есть одна загвоздка: человеческий мозг потребляет мощность, эквивалентную 25 Вт. Карта с одним GPU (графического процессора) потребляет в десять раз больше, т. е. 250 Вт. Электронные цепи в миллион раз менее эффективны, чем биологические.

Коктейль из старого и нового

Сегодняшние приложения, как правило, используют сочетание машинного обучения, GOFAI и классических вычислений. Рассмотрим машину, способную управлять автомобилем без водителя. Бортовая система визуального распознавания, обученная распознавать визуальные объекты и сигналы, присутствующие на дороге, использует определенную архитектуру нейронной сети, называемую «сверточной сетью». Но решение, которое принимает автопилот автомобиля, когда он «видит» разметку полосы движения, тротуар, припаркованный автомобиль или велосипед, зависит от традиционных систем планирования траектории движения, с правилами, написанными вручную, или же систем, основанных на правилах, которые относятся к области GOFAI.

Полностью автономные транспортные средства находятся все еще на этапе тестирования, но ряд коммерческих автомобилей, подобных «Tesla» 2015 г., уже имеют системы помощи водителю с использованием сверточных сетей. Регуляторы скорости, оснащенные системами технического зрения, берут транспортное средство под автономное управление на автостраде, удерживают его в пределах полосы движения или автоматически меняют ее после того, как водитель включает сигнал поворота, и при этом следят за наличием других автомобилей вокруг.

Тест Тьюринга

Мы будем писать о возможностях и приложении искусственного интеллекта на протяжении всей этой книги, но сейчас пришло время сделать шаг назад. Как определить общие черты всех этих интеллектуальных машин?

Я бы сказал, что искусственный интеллект – это способность машины выполнять задачи, обычно выполняемые животными и людьми, то есть воспринимать, рассуждать и действовать. Эти свойства неотделимы от способности учиться, как это наблюдается и у живых существ. Системы искусственного интеллекта – это просто очень сложные электронные схемы и компьютерные программы. Но возможности хранения информации, доступ к памяти, скорость вычислений и возможности обучения позволяют им «абстрагироваться» от конкретных примеров, содержащейся в огромных объемах данных.

Воспринимать, рассуждать и действовать. Алана Тьюринга – английского математика, оказавшего существенное влияние на развитие информатики и расшифровавшего Enigma – систему шифрования сообщений немецкой армии времен Второй мировой войны, можно назвать первым «пророком» обучающихся машин. Он уже проникся важностью обучения, когда написал: «Вместо того чтобы пытаться создать программу, имитирующую сознание взрослого, почему бы не попытаться создать такую, которая имитирует ум ребенка. Ведь если ум ребенка получает соответствующее воспитание, он становится умом взрослого человека»[8].

Имя Алана Тьюринга связано, кроме того, со знаменитым тестом, суть которого сводится к диалогу между человеком и двумя собеседниками, которых он не видит: компьютером и еще одним человеком[9]. Если по истечении некоторого заданного времени человек не определяет, кто из двух «собеседников» является машиной, значит, машина успешно прошла тест. Но достижения в области ИИ сегодня таковы, что эксперты больше не считают тест Тьюринга эффективным. Способность вести осмысленный диалог является лишь одной из форм интеллекта, и здесь искусственный интеллект легко может обмануть даже опытного эксперта: для этого машине достаточно выдать себя за рассеянного и слегка аутичного подростка, плохо знающего английский язык, чтобы объяснить недостаточное понимание собеседника и ошибки в собственной речи.

Постоянное совершенствование

Я уверен, что глубокое обучение – это неотъемлемая часть будущего искусственного интеллекта. Однако на сегодняшний день эти системы не способны к логическим рассуждениям. В то же время подходы к ИИ, основанные на логике, в нынешнем их состоянии несовместимы с обучением. Наша важнейшая задача на ближайшие годы – сделать эти два подхода совместимыми друг с другом.

Таким образом, глубокое обучение пока остается очень мощным… и очень ограниченным инструментом. Речь не идет о том, чтобы заставить машину, обученную игре в шахматы, работать, и наоборот. Она выполняет действия, не имея ни малейшего представления о том, что делает, и не обладает здравым смыслом. Если бы системы искусственного интеллекта были помещены на шкалу интеллектуальных способностей от мыши до человека, то они оказались бы намного ближе к мыши, чем к человеку – и это несмотря на то, что производительность ИИ в точных и узкоспециализированных задачах является сверхчеловеческой.

Могущество алгоритма

Алгоритм – это последовательность инструкций. Вот и все. В этом нет ничего волшебного. Ничего непонятного. Приведем пример. Возьмем список цифр, которые я хочу расставить в порядке возрастания. Я пишу компьютерную программу, которая считывает первое число, сравнивает его со следующим и меняет их положение, если первое больше второго. Затем я сравниваю второе и третье и повторяю ту же операцию до последнего числа в списке. Затем я возвращаюсь к списку столько раз, сколько необходимо, пока при очередном проходе число произошедших замен не станет равным нулю.

Данный алгоритм сортировки списка чисел называется «сортировкой пузырьком». Я могу перевести его в серию точных инструкций на вымышленном языке программирования[10].