реклама
Бургер менюБургер меню

Терренс Сейновски – Антология машинного обучения. Важнейшие исследования в области ИИ за последние 60 лет (страница 11)

18px

Марр умер от лейкемии в 1980 году в возрасте 35 лет. Книга «Зрение», над которой он работал в последние годы жизни, была опубликована после его смерти в 1982 году[84]. По иронии, несмотря на восходящий подход Марра, который подразумевает начало исследования зрения с сетчатки и затем моделирование каждого последующего этапа визуальной обработки, его книга больше известна тем, что она пропагандирует нисходящую стратегию: начало исследования с вычислительного анализа задачи, затем построение алгоритма для ее решения и, наконец, реализация алгоритма в аппаратном обеспечении. Это может быть хорошим способом объяснить вещи после того, как вы определили их, однако с помощью такого принципа невозможно исследовать работу мозга. Труден первый шаг – определение задачи, которую решает мозг. Наша интуиция часто вводит нас в заблуждение, особенно когда дело доходит до зрения; мы исключительно хорошо видим, но мозг скрывает от нас нюансы. Позже мы рассмотрим, как был достигнут прогресс в понимании видения, работающего изнутри, с применением алгоритмов обучения.

Фрэнсис Крик присоединился к семинару в Ла-Хойя в 1979 году. После того как в 1953 году совместно с Джеймсом Уотсоном он открыл структуру ДНК, в 1977 году Крик перешел в Институт биологических исследований Солка и переключил внимание на неврологию. Он пригласил к себе в гости исследователей и вел с ними долгую дискуссию о неврологии, особенно о зрении. Дэвид Марр был среди них. В конце книги Марра есть показательная дискуссия в форме сократического диалога. Позже я узнал, что разговор в книге Марра возник из обсуждения с Криком. Когда я перешел в Институт Солка в 1989 году, я понял ценность таких бесед.

Прапраправнук Джорджа Буля

Джеффри – прапраправнук Джорджа Буля. В 1854 году Буль написал книгу «Исследование законов мышления», которая стала математической основой того, что теперь называется булевой алгеброй, или алгеброй логики (рис. 4.3). Буль – британский учитель-самоучка начала XIX века. У него было пять дочерей, некоторые из них – со способностями к математике. Взгляд Буля на то, как манипулировать логическими выражениями, лежит в основе цифровых вычислений и являлся естественной отправной точкой для молодых исследователей ИИ в 1950-х годах. Джеффри гордился тем, что у него была ручка Буля, которая передавалась в его семье из поколения в поколение.

Рис. 4.3. «Исследование законов мышления» Джорджа Буля. Книга известна изучением логики как основы мыслительной деятельности, но также касается вероятностей. Эти две области математики подтолкнули к использованию обработки символов и нейросетевому подходу к ИИ, соответственно

Готовясь к докладу, я однажды взял книгу Буля и обнаружил, что полное название – «Исследование законов мышления, на которых основаны математические теории логики и вероятностей» (рис. 4.3). Буль известен своими работами, посвященным логике, а не вероятностям. Теория вероятностей[85] – основа современного машинного обучения, и она может объяснить неопределенности в реальном мире лучше, чем логика, которая описывает идеальный мир. Так что Буль – один из отцов машинного обучения. Ирония в том, что забытая сторона его работы расцвела спустя 250 лет при помощи его праправнука. Буль гордился бы им.

Проект «Шалтай-Болтай»

Когда я был аспирантом в Принстонском университете, мой подход к пониманию мозга состоял в написании уравнений для сетей нелинейно взаимодействующих нейронов и их анализе[86]. Таким же путем физики на протяжении столетий объясняли природу гравитации, света, электричества, магнетизма и ядерных сил. Каждый день, перед тем как лечь спать, я молился богу физики: «Дорогой Бог, пусть уравнения будут линейными, шум – гауссовым, а переменные – разделяющимися». Это условия, которые приводят к аналитическим решениям; но сетевые уравнения были нелинейные, шум – негауссовым, а переменные – неразделяющимися, поэтому не позволяли сделать однозначные выводы. Более того, моделирование на компьютере уравнений для больших сетей в то время было невероятно медленным. Еще более обескураженный, я понятия не имел, были ли у меня правильные уравнения.

Обучаясь в Принстонском университете, я обнаружил, что нейробиологи достигли невероятного прогресса. Нейробиология – сравнительно молодая наука, она была основана 45 лет назад. До этого исследования в области мозга проводились другими науками: биологией, психологией, анатомией, физиологией, фармакологией, неврологией, психиатрией, биоинженерией и многими другими. Во время первой встречи Общества нейробиологии в 1971 году Вернон Маунткасл лично приветствовал каждого у дверей[87]. Сегодня в обществе уже 40 000 членов, из которых 30 000 ежегодно приходят на встречу. Маунткасл был сотрудником Университета Джонса Хопкинса – там мы и встретились, когда я пришел туда на свою первую работу на факультет биофизики в 1982 году[88]. Он был легендарным нейрофизиологом, открывшим кортикальный столбец. Я тесно сотрудничал с ним при создании Института разума и мозга[89], первого в своем роде.

Есть множество разных уровней исследования мозга (рис. 4.4), и важные открытия были сделаны на каждом из них. Интеграция полученных знаний – сложнейшая задача. Она напоминает детский стишок про Шалтая-Болтая:

Шалтай-Болтай Сидел на стене. Шалтай-Болтай Свалился во сне. Вся королевская конница, Вся королевская рать Не может Шалтая, Не может Болтая, Шалтая-Болтая, Болтая-Шалтая, Шалтая-Болтая собрать![90]

Нейробиологи очень хорошо разбирают мозг по кусочкам, но собрать эти кусочки воедино – серьезная проблема, которая требует не упрощения, а синтеза, чего я и хочу добиться. Но в первую очередь нужно знать, что это за части, ведь в мозге их множество.

На семинаре для выпускников, который проводил Чарльз Гросс, психолог, изучавший в Принстонском университете зрительную систему обезьян, я был впечатлен прогрессом, достигнутым благодаря записи отдельных нейронов в зрительной коре Дэвидом Хьюбелом и Торстеном Визелем из Гарвардской медицинской школы, которые позже, в 1981 году, получили Нобелевскую премию по физиологии или медицине за новаторские исследования первичной зрительной коры. Их открытия, о которых пойдет речь в главе 5, лежат в основе глубокого обучения, что описано в главе 9. Если физика не сумела проложить дорогу к пониманию работы мозга, то, возможно, сумеет нейробиология.

Рис. 4.4. Уровни исследования в головном мозге. Слева: пространственная шкала колеблется от молекулярного уровня (снизу) до всей центральной нервной системы (вверху). Многое известно о каждом из уровней, но наименее изученным является сетевой уровень – небольшие группы взаимосвязанных нейронов. Это уровень, моделируемый искусственными нейронными сетями. Справа: изображения синапса (внизу), простой ячейки зрительной коры (посередине) и иерархии корковых областей в зрительной коре (вверху)

Чему я научился в Вудс-Хоуле

После защиты диссертации по физике в Принстонском университете в 1978 году я принял участие в десятидневном летнем курсе по экспериментальной нейробиологии в Вудсхоулской лаборатории биологии моря. В первый день я пришел в повседневной синей спортивной куртке и аккуратно отглаженных штанах цвета хаки. Стори Лэндис, один из преподавателей курса, отвела меня в сторону и купила мне мою первую пару джинсов. В то время Стори работала на факультете нейробиологии в Гарвардском университете, а вскоре стала руководителем Национального института неврологических заболеваний и инсультов в Национальном институте здоровья. Она до сих пор припоминает мне тот случай.

После летнего курса я остался на несколько недель сентября, чтобы завершить начатый проект. Он позволил получить потрясающие электронно-микроскопические изображения электрорецепции[91] скатов[92]. Скаты и акулы способны воспринимать очень слабые электрические поля; их рецепторы настолько чувствительные, что они могут обнаружить сигнал от 1,5-вольтовой батарейки у другого берега Атлантического океана. Скаты могут применять это шестое чувство для навигации, используя слабые электрические сигналы от своего движения через магнитное поле Земли, которое генерирует микровольтовые сигналы в их электрорецепторах.

Однажды, когда я фотографировал в подвале студенческого общежития Loeb Hall, мне неожиданно позвонил Штефан Куффлер, основатель факультета нейробиологии в Гарвардской медицинской школе. Куффлер – легендарная персона в нейробиологии. Он предложил мне работать в его лаборатории, что изменило мою жизнь. Я переехал в Бостон сразу, как окончил аспирантский проект у Алана Гельперина по фиксированию метаболической активности в педальном ганглии Limax maximus, большого придорожного слизня[93]. Я никогда больше не смогу съесть улитку, не думая о ее мозге. Алан отошел от нейроэтологии, цель которой – изучение нейронных основ поведения. Я узнал, что так называемая более простая нервная система беспозвоночных на самом деле более сложная, так как они выживают с гораздо меньшим количеством нейронов, каждый из которых узкоспециализированный.

В лаборатории Куффлера я изучал передачу сигнала в синапсе симпатического ганглия лягушки-быка – в 60 тысяч раз более медленную, чем быстрая миллисекундная синаптическая передача в коре ее мозга (рис. 4.5)[94]. Это нейроны, которые формируют выход вегетативной нервной системы, регулирующей работу желез и внутренних органов. После стимуляции нерва, ведущего к синапсу, вы успеете сходить за кофе и вернуться до того, как синаптический вход в нейрон достигнет пика, что произойдет примерно за минуту, а затем ему потребуется десять минут, чтобы восстановиться. Синапсы – фундаментальный вычислительный элемент в мозге, и разнообразие типов синапсов говорит о многом. Этот опыт показал мне, что упрощение, возможно, не лучший путь к пониманию работы мозга.