реклама
Бургер менюБургер меню

Лев Гиндилис – SETI: Поиск Внеземного Разума (страница 9)

18px

Приемник позволяет обнаружить сигнал, но не дает возможность принимать информацию, если при передаче используется одна из систем амплитудной модуляции. Можно однако, передавать информацию, меняя частоту сигнала от посылки к посылке. Тогда сигнал будет появляться то в одном, то в другом канале приемника), причем с каждой новой посылкой он будет регистрироваться в каждом новом канале.

Появление сигнала в данном канале можно рассматривать как определенное сообщение. Скорость передачи информации в такой системе будет составлять (log2N)/τ бит в секунду (N — число спектральных каналов в приемнике). А полное количество информации, которое можно передать за время одной посылки длительностью τ, равно log2N, что при N = 109—1010 составляет приблизительно 30 бит.

Рис. 1.5.1. Многоканальный приемник В. А. Котельникова для поиска сигналов ВЦ: А — антенна, У — усилитель, Ф — узкополосные фильтры, И — интеграторы, П — пороговые устройства

Стратегия поиска при использовании подобной системы, согласно В. А. Котельникову, состоит в следующем. Рассмотрим две цивилизации А и В, расположенные на расстоянии R друг от друга. Цивилизация А ведет передачу, цивилизация В работает на прием. Осуществляя поиск по направлению, цивилизация А последовательно «обшаривает» лучом своей антенны все небо, при этом длительность посылки сигнала в данном направлении равна τ. Пусть телесный угол луча антенны равен (О. Тогда для обхода небесной сферы требуется время t0 = 4πτ/ω. Поскольку цивилизация В, как мы предположили, имеет систему обнаружения, охватывающую все небо, одна из антенн этой системы смотрит на цивилизацию А. Приемник, связанный с этой антенной, зафиксирует сигнал в момент, когда сканирующая антенна цивилизации А окажется направленной на цивилизацию В. Эксперимент по обнаружению сигнала должен длиться в течение времени t, значительно превышающего t0 . Тогда за время проведения эксперимента сигнал будет зарегистрирован несколько раз (вообще говоря, в разных каналах) через равные промежутки времени t0 , что позволит уверенно отличить его от случайных помех.

Какова же длительность эксперимента при подобном поиске? Примем, что длительность посылки в данном направлении τ = 3 с. Пусть площадь передающей антенны S1 = 105 м2, длина волны λ = 10 см; тогда ω = λ2/S1 = 10-7, t0 = 3,8 • 108 с ≈ 12 лет. А полное время эксперимента в этом случае будет составлять ~ 102 лет. Это время можно существенно сократить, если цивилизация А, вместо того, чтобы «обшаривать» все небо, будет последовательно облучать все подходящие звезды в сфере радиуса R, быстро переводя антенну с одной звезды на другую. Пусть, например, система рассчитана на дальность связи 3000 св. лет, т. е. обе цивилизации предполагают, что расстояние между ними не превышает 3000 св. лет. В сфере такого радиуса содержится ~ 108 звезд. Поскольку каждая звезда облучается в течение 3 секунд, то (пренебрегая временем на перестановку антенны) полное время облучения всех звезд составит 3 • 108 с или 10 лет. То есть оно того же порядка, как и при обходе всего неба. Однако нет необходимости облучать все звезды. Цивилизация А должна выбрать только те из них, около которых можно ожидать наличие технически развитых цивилизаций. В. А. Котельников принял, что доля таких «подходящих» звезд составляет 1 %. Тогда время их облучения будет составлять 0,1 года. Если эксперимент длится 1 год, то за это время сигнал появится 10 раз через каждые 36 дней.

Каковы параметры системы обнаружения? Пусть мощность передатчика составляет 109 Вт, λ = 10 см, τ = 3 с. Оптимальные условия обнаружения радиоизлучения реализуются, когда полоса каждого канала Δf/ = 1/τ. Будем считать, что это условие выполнено. Пусть шумовая температура приемника Тш = 30 К, и пусть у приемника установлено значение порога, при котором вероятность ложного срабатывания и вероятность пропуска сигнала составляет 10-5. Чтобы при этих условиях обнаружить сигнал на расстоянии 3000 св. лет, надо иметь приемную антенну площадью 900 м2. Чтобы с помощью таких антенн перекрыть весь небесный свод, надо иметь более миллиона антенн (см. табл. 1.5.1). При этом не следует забывать, что каждая такая антенна оборудуется многоканальным приемником, содержащим 109—1010 спектральных каналов. Конечно, создание подобной системы чрезвычайно сложная задача.

Параметры системы весьма чувствительны к расстоянию между цивилизациями. Если система рассчитана на 1400 св. лет, то для обнаружения требуется 250 тысяч более скромных антенн площадью 200 м2 каждая. При этом время обходы всех подходящих звезд составляет 3,6 дня. Если эксперимент по-прежнему длится 1 год, то за это время сигнал должен появиться 100 раз. В этом случае можно разделить небосвод на 10 частей и последовательно обследовать каждую из них. Тогда, чтобы перекрыть исследуемую часть неба, количество антенн можно сократить в 10 раз, что составит 25 тысяч антенн. Длительность обследования каждой части неба — 36 дней, за это время сигнал должен появиться 10 раз. При расстоянии 300 св. лет система должна содержать 11 тысяч совсем небольших антенн площадью 9 м2. При этом время обхода всех подходящих звезд, при принятых параметрах передающей системы, составит всего 1 час; небосвод можно разделить на 1000 частей, для перекрытия каждой из которых потребуется только 11 антенн. В этом случае система обнаружения вырождается в несколько антенн, последовательно (по частям) обследующих небесный свод.

Исходя из подобных расчетов, В. А. Котельников пришел к выводу, что обнаружение сигналов от цивилизаций нашего уровня вполне реально, если одна такая цивилизация приходится на 106 звезд. Если одна цивилизация приходится на 107 звезд, то при определенных условиях ее еще можно обнаружить. Но если одна цивилизация приходится на 108 звезд, то обнаружить ее современными средствами крайне затруднительно.

Если первая часть предложения В. А. Котельникова — создание многоканальных приемников — впоследствии была реализована, то к созданию многоантенных систем обнаружения пока даже не приступали. Эксперименты по поиску монохроматических сигналов, которые проводились до настоящего времени, состояли в кратковременном, последовательном обследовании небольшого числа подходящих звезд в ближайших окрестностях Солнца.

Второе направление, развиваемое Н. С. Кардашевым — поиск сигналов от сверхцивилизаций (см. § 1.4). Поскольку речь идет о непрерывном широкополосном излучении, обнаружение подобных сигналов возможно с помощью обычной радиоастрономической аппаратуры. Здесь, практически, не требуется проводить поиск по частоте. А поиск по направлению сводится к исследованию различных дискретных источников космического радиоизлучения с целью выявления среди них искусственных радиоисточников, в соответствии с ожидаемыми критериями искусственности. Обследование звезд в рамках этой программы не представляет интерес, так как сверхцивилизации, осуществляющие преобразование таких гигантских потоков энергии, уже не могут ассоциироваться с обычными звездами.

Следует заметить, что в начале 1960-х годов, когда была выдвинута эта программа, космическое радиоизлучение в оптимальном для межзвездной связи сантиметровом диапазоне волн было еще очень слабо изучено. Обзоры неба, проведенные к тому времени, на основе которых были составлены каталоги радиоисточников, выполнялись на более длинных волнах. Например, знаменитый Кембриджский обзор проводился на частоте 178 МГц. Можно было ожидать, что существует множество радиоисточников с максимумом излучения в сантиметровом диапазоне, которые не видны на более длинных волнах[25]. Среди них могли быть и искусственные источники. Поэтому Н. С. Кардашев выдвинул в качестве первоочередной задачи SETI проведение полных обзоров неба в оптимальном для межзвездной связи сантиметровом диапазоне волн. Это предложение было поддержано радиоастрономами, поскольку оно смыкалось с актуальными задачами радиоастрономии. Предполагалось, что в процессе обзора можно будет делать отбор источников с малыми угловыми размерами, а затем исследовать их согласно другим ожидаемым критериям искусственности.

Кроме того, Н. С. Кардашев обратил внимание на необходимость поиска искусственных радиоисточников в центре нашей Галактики и в ближайших галактиках — Магеллановых Облаках и Туманности Андромеда, а также на исследование некоторых пекулярных радиоисточников.

Бюраканское совещание рекомендовало развивать исследования в обоих направлениях: поиск монохроматических сигналов от ближайших звезд и поиск сигналов от сверхцивилизаций путем детального исследования радиоисточников, подозреваемых в качестве искусственных.

1.6. Сигнал готовности

Интересные соображения о стратегии поиска внеземных цивилизаций были развиты патриархом советской радиоастрономии С. Э. Хайкиным (1901-1968)[26]. По состоянию здоровья он не мог присутствовать на бюраканской конференции, представленный им доклад был зачитан Ю. Н. Парийским, с которым Хайкин обсуждал основные положения своего доклада.

«Своеобразие обсуждаемой проблемы, — подчеркнул Хайкин, — состоит в том, что она обращена в далекое будущее. Если не проявлять необоснованного оптимизма (который был бы только вреден), то нужно быть готовым к тому, что результат этой работы станет известным только нашим потомкам и, быть может, даже далеким потомкам». Отсюда следует, что планомерная работа по установлению радиосвязи с ВЦ «должна быть организована как систематическая работа многих поколений». Конечно, — отмечал Хайкин, — нельзя исключить того, что первый успех будет достигнут быстро, но это скорее надо рассматривать «как очень маловероятную случайность, на которую нельзя рассчитывать при организации планомерной работы». В обстановке энтузиазма первых лет SETI это сдержанное заявление прозвучало некоторым диссонансом, но последующее развитие событий подтвердило правоту Хайкина.