реклама
Бургер менюБургер меню

Ирина Радунская – Квинтэссенция. Книга первая (страница 9)

18px

ВТОРОЙ СМЫСЛ

Ньютон нигде не упоминает ни о каком ином смысле термина «сила инерции». Он, видимо, не знал о такой возможности. Но она существует.

Человек, слышавший о Теории относительности Эйнштейна, может быть, скажет: «Наверняка речь идет о Теории относительности. Там бывают всякие чудеса». Сказав это, он будет не прав.

Второй смысл термина «сила инерции» проявляет себя в обычной жизни. Нужно только внимательно присмотреться.

Давайте попробуем.

Возьмем камень и привяжем его к концу короткой веревки. Будем крепко удерживать веревку за второй конец и сильно бросим камень вперед. Веревка очень быстро распрямиться и задержит камень. В этот момент рука испытает сильный рывок.

Этого следовало ожидать. Ведь брошенный камень, выражаясь словами Ньютона, предоставлен самому себе и поэтому удерживает состояние равномерного прямолинейного движения. (Следуя Галилею, мы отвлекаемся от второстепенного, от действия силы тяжести и трения. На коротком пути они не успевают себя проявить). Сила инерции камня проявляется не только в тот момент, когда мы ускоряем его перед броском, но и когда сила руки через натянувшуюся веревку останавливает камень.

Все происходит в точном соответствии со взглядами Ньютона.

Теперь представим себе другую ситуацию. Проведем еще один мысленный опыт. Мы сидим в вагоне движущегося поезда лицом в сторону движения, а над нами на багажной полке лежит чемодан. Вдруг поезд резко останавливается. Мы испытываем толчок, а чемодан срывается с полки и, ударившись в противоположную стенку, падает на сидение.

Все это видит человек, стоящий недалеко от рельсов. Человек рассуждает: пока поезд двигался равномерно, чемодан двигался вместе с ним. Поезд внезапно остановился. Его остановили тормоза. Но чемодан не затормозило, на него не действовали никакие силы. Не удивительно, что он по инерции продолжал свое движение вперед и слетел с полки. Так и должно быть по первому закону Ньютона. Чемодан сохранил свое прямолинейное движение.

Но как должны относиться к этому мы, пассажиры?

Если поезд идет по современному «бархатному» пути, не имеющему неровностей и стыков, а окна закрыты плотными шторами, мы не смогли бы определить, двигается ли поезд с постоянной скоростью или стоит неподвижно. В обоих случаях чемодан, лежащий на полке, не перемещается по ней. Он неподвижен относительно вагона.

Здесь уместно вспомнить о мысленном опыте Галилея, проведенном им под палубой корабля. Но возвратимся в вагон поезда.

Вдруг происходит толчок, заставляющий нас наклониться. Одновременно чемодан, ранее неподвижно лежавший на полке, срывается с места и летит поперек купе.

Как объяснить это нам, убежденным в справедливости законов Ньютона и уверенным в том, что до толчка вагон был неподвижен?

Мы вынуждены предположить, что толчок вызван внезапным появлением новой силы, заставившей нас наклониться и вынудившей чемодан, лежавший до того неподвижно, прийти в движение.

Ведь, без проявления этой силы, чемодан не мог бы приобрести ускорение, а долен был оставаться неподвижно!

Но откуда взялась эта сила?

Мы не можем обнаружить никаких предметов, толкнувших чемодан. Даже если бы мы заранее знали о предстоящем толчке, мы не смогли бы обнаружить никаких деформаций чемодана, вследствие которых он начал двигаться.

Несмотря на очевидность, мы вынуждены признать появление новой силы. Силы, заставившей чемодан слететь с полки, а нас наклониться, словом, приведшей в движение все предметы, не прикрепленные к вагону. Причем действие этой силы не связано с деформациями тел, как это всегда бывает при действии сил инерции, введенных в науку Ньютоном.

Физики называют и эти силы силами инерции.

- Минутку, — вправе сказать внимательный читатель, — Ньютон и мы, следуя ему, назвали силами инерции совсем иное. Ведь Ньютон написал: «Эта сила проявляется единственно тогда, когда другая сила, к нему (в нашем случае к чемодану, Р.Ж.) приложенная, производит изменение в его состоянии».

- Мы убедились в том, — продолжит читатель, — что «другая сила», в результате действия которой «проявляется» сила инерции, всегда связана с деформацией предметов. А такой деформации при происшествии в вагоне не было.

Читатель прав. Силы инерции, признаки которых описал Ньютон, не имеют ничего общего с силами инерции, вызвавшими происшествие в вагоне.

Так сложилось в истории науки, что два различных явления, две различных силы имеют общее название. Эта ситуация зачастую приводит к недоразумениям. Она заслуживает того, чтобы в ней разобраться.

Давайте возвратимся в наш вагон и откроем шторы.

ИЛЛЮЗИИ И РЕАЛЬНОСТЬ

Прежде, чем приступить к делу, вспомним, что мы наблюдали, когда наш вагон стоял на станции рядом с другим неподвижным поездом.

Мы видели, что наш поезд плавно трогается с места и вагоны соседнего поезда начинают все быстрее мелькать перед нашим окном. Вдруг, когда мимо нас промелькнул последний вагон, мы видим здание вокзала и людей на платформе и понимаем, что ошиблись. Поехал не наш поезд, а соседний!

Иногда, если поезд ведет хороший машинист, мы, не чувствуя толчка и не ощущая других признаков движения, думаем, что поехал соседний поезд. Ошибка выясняется лишь когда за окном возникает не вокзал, а совершенно иной пейзаж.

Тот, кто не испытал подобных иллюзий, должен поверить прочитанному.

Если скорость возрастает медленно и плавно, то трудно установить, что она изменяется, что все происходит в соответствии со вторым законом Ньютона. Создается впечатление, что скорость постоянна, а значит на предметы не действуют силы, вызываемые другими предметами. Создается впечатление, что здесь действует первый закон Ньютона, закон инерции. А в этом случае не только человек, но и приборы не могут установить какой из предметов движется, а какой неподвижен. Или, может быть, оба движутся прямолинейно и равномерно, но движутся по-разному.

Так проявляет себя принцип относительности Галилея, суть которого состоит в равноправии систем, в которых справедлив первый закон Ньютона — закон инерции.

Эти системы, на которые не действуют внешние силы, называют инерциальными системами. Встречая это название, мы понимаем, что речь идет о системах, в которых справедлив закон инерции.

Вернемся в вагон, движущийся с постоянной скоростью. Посмотрим на чемодан, неподвижно лежащий на полке, и на предметы, движущиеся за окном.

Принцип относительности Галилея заставляет нас признать, что вагон может считаться неподвижным, а ландшафт — движущимся с постоянной скоростью.

Особенно ясно это для случая двух кораблей, встречающихся в открытом море. Невозможно определить какой из них движется, если не прибегнуть к лагу — прибору, показывающему скорость корабля относительно воды.

Теперь, внимание!

Пассажир в вагоне замечает, что какая-то сила заставляет его наклониться, бросает вперед чемодан, спокойно лежавший на полке, и одновременно заставляет остановиться ландшафт, до того пробегавший за окном.

Эйнштейн обратил внимание на то, что тормоза не действуют на телеграфный столб и окружающую местность. Конечно, при торможении колеса деформируют рельсы, увлекая их верхнюю поверхность за собой. Но рельсы прикреплены к шпалам, шпалы связаны с грунтом, а масса Земли столь велика, что тормозящий поезд практически не изменяет ее скорость. После остановки поезда деформации рельсов и грунта исчезают.

Итак, приборы, установленные в вагоне, как и пассажиры отмечают, что во время торможения возникают новые силы, источник которых остается неизвестным. Физики называют эти силы силами инерции. Именно эти силы, фиксируемые приборами, находящимися в поезде, заставляют, с точки зрения пассажира, слететь с полки чемодан. Они же заставляют «остановиться» ландшафт, двигавшийся до того навстречу вагону.

Мы уже знаем, что пассажир и чемодан испытали действие силы инерции, заставившей их начать движение. Теперь мы вынуждены признать, что эти силы остановили бегущий ландшафт!

Это неожиданный вывод. Силы инерции, понимаемые иначе, чем силы инерции Галилея — Ньютона, силы, не имеющие видимого «источника», возникновение которых не вызвано какой-то определенной причиной, влияют на весь мир! Это кажется странным, но нужно помнить, что такие силы приходится ввести пассажиру тормозящегося вагона для того, чтобы не вступать в противоречие со вторым законом Ньютона.

Ньютон не применял термин «силы инерции» для описания подобных явлений, хотя он, несомненно, наблюдал нечто подобное, сидя в карете. По-видимому его не интересовали ситуации, разыгрывающиеся столь кратковременно и случайно.

Это только начало.

Вспомним о блестящей полосе, образующейся на закрепленном рельсе в месте его поворота. Она возникает из-за действия центробежной силы, прижимающей реборды колес к рельсу.

Но внимательный наблюдатель скажет, что блестящая полоска есть и на прямых участках рельсов. Ее можно увидеть на внутренней части головки правого (по ходу поезда) рельса двухколейной железной дороги даже там, где рельс не изогнут. (В южном полушарии эта полоска образуется на левом рельсе).

Что же прижимает колеса к этим рельсам? Ведь рельсы прямые, значит, они не должны испытывать бокового давления колес. Не должны быть деформированы этим давлением. Не должны со своей стороны давить на колеса, чтобы направить их вдоль (не существующего здесь) закругления пути. Подчеркнем еще раз: правые рельсы стираются и на прямых участках пути. Это выглядит странно и непонятно.