Алексей Савватеев – Математика для гуманитариев. Живые лекции (страница 2)
Давайте теперь поговорим о словосочетании «абсолютное доказательство». Если вы в общем и целом поймете, что это такое, то значит, мы не зря сегодня позанимались с вами.
Что такое абсолютное доказательство, я объясню на примерах. Начнем с игры в «пятнадцать».
Слушатель: Пятнашки?
Слушатель: Шестнашки?
А.С.: Чтобы мы говорили об одном и том же, я объясню правила этой игры.
В квадрате 4 x 4 имеется пятнадцать одинаковых квадратных фишек, пронумерованных от 1 до 15. Их нельзя вынимать, можно только передвигать на свободное место. Стандартная исходная позиция: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 и пустое место, которое используется для передвижения фишек. (См. рис. 1; может быть задана и нестандартная исходная позиция.)
Пустое место можно гнать по всей игровой зоне, т. е.
Игру придумал где-то 130 лет назад американский математик-популяризатор Сэм Лойд. А чуть позже он пообещал большой приз ($1000) тому, кто переведет комбинацию с картинки рис. 2 в исходную позицию на рис. 1.
Такая вот детская игра. Делайте, что хотите (в рамках указанного правила). Передвигайте фишки как вам угодно. Только приведите игру в исходную позицию. Начался настоящий пятнашечный бум. Примечательно, что на этот момент наука алгебра в другой части света находилась в очень продвинутом состоянии. Математики сказали свое веское слово, предоставив абсолютное доказательство того, что выиграть в такую игру невозможно. Тем не менее ажиотаж с игрой в пятнашки продолжался еще много лет — так много было желающих посрамить математику и «срубить» тысячу долларов.
Что же означает в этой игре «абсолютное доказательство»? Это значит: какие бы действия вы не совершили, сколько бы времени и каким количеством способов бы не передвигали фишки, вы
Я постараюсь доказать эту теорему. Но что значит «постараюсь доказать»? Что вообще означает «доказать»? Что значит «я ее докажу»? Как вы это понимаете?
Слушатель: Мы будем убеждены.
А.С.: Вот именно. Я найду способ вас убедить. Но с другой стороны, это не совсем то, что нам нужно.
Расскажу такую историю. Один рыцарь объяснял другому рыцарю математику. Первый рыцарь был очень умный, а второй — очень глупый. Второй рыцарь никак не мог понять доказательство. И тогда умный рыцарь говорит: «Честное благородное слово, это так». И второй сразу поверил: «Ну, тогда о чем разговор. Мы же с Вами люди безупречной чести, и я, конечно, Вам верю. Я полностью убежден».
У нас разговор пойдет не о таком способе убеждения. Идея математического, абсолютного доказательства не в том, что я дам честное слово, а в том, что я, апеллируя к вашему
Насчет пошаманить есть очень поучительный эпизод из жизни математиков. В начале XX века жил в Индии математик Сринива́са Рамануджан. На момент начала нашей истории ему было 26 лет. Он заваливал письмами лондонское математическое общество, в которых были формулы, содержащие числа «
Английский математик пишет новое письмо, в котором пытается заверить Рамануджана, что никто не будет претендовать на его открытие. Такое предположение оскорбляет индуса. Он отвечает, что совершенно не дорожит такими вещами, как авторство.
В конце концов Рамануджан все-таки приехал в Лондон, где стал профессором университета. Многие присланные им формулы оказались верны. Но далеко не все из предложенных им формул на сегодняшний день доказаны. Некоторые из них остаются откровениями, которые были сообщены богиней Рамануджану. «Абсолютное» их доказательство пока неизвестно.
А теперь отдохнем, посмотрим на этот футбольный мяч (рис. 3).
Из чего состоит мяч? Он сшит из лоскутков. Вы когда-нибудь задумывались над том, как именно сделан футбольный мяч и почему именно так? Это чисто математический вопрос. Вы пока подумайте, где же тут математика. А я приступаю к математическому доказательству невозможности выиграть в игру «15».
Начнем с гораздо более простой ситуации. Возьмем доску 8 x 8 (рис. 4) и достаточно большой запас (заведомо больший, чем нам может понадобиться) костей домино (одна доминошка покрывает две клеточки на доске).
Теперь я аккуратненько отрезаю у квадрата 8 x 8 два противоположных угла (рис. 5). Получилась фигура, которая состоит из 62 квадратиков. Число, делящееся на 2. Поэтому почему бы не попробовать замостить ее доминошками. Но если вы начнете пытаться сделать это один, два, три, четыре раза, у вас ничего не будет получаться. 30 доминошек влезет, а 31-я — нет. Физик, когда увидит эту ситуацию, поэкспериментирует 1000 раз и скажет: «Экспериментально установлен закон — нарисованная фигура не замощается доминошками 1 х 2». Физик[4] также может наблюдать за игрой в футбол много-много раз и сказать: «Экспериментально установлено, что мяч падает вниз, а также, знаете, все остальные тела, похоже, тоже падают вниз». Все знают, что все тела падают вниз. Это экспериментальный факт. Но доказать этот факт, в принципе, невозможно. Никто на свете не гарантирует, что завтра этот закон не прекратит действовать. Придумают какую-нибудь гравицапу, и всё полетит не вниз, а вверх. Это — физический закон, он не может быть доказан. Он может быть только проверен очень много раз. Еще хуже с социальными и экономическими законами, например, с законом «спрос рождает предложение». У экономистов много таких заклинаний. И они очень часто не работают. Наступает кризис, наступает новая фаза развития социума — и всё. Перестают быть верными старые законы. Социальная реальность постоянно ломает стереотипы, которые связаны с ее поведением, развитием, эволюцией. Физическая реальность так не делает, но тем не менее доказательств в ней тоже нет.
В нашем случае с доской мы, в принципе, можем попробовать перебрать все варианты и сделать вывод — не получилось. Но сколько времени нам нужно будет потратить? Давайте примерно оценим. Сколькими способами можно положить первую доминошку?
Слушатель: Тремя.
А.С. (показывая на доске 8 x 8 различные положения кости домино): Раз, два, три, четыре, пять, шесть, семь, восемь, девять…
Слушатель: Двумя.
Слушатель: Тридцатью.
А.С.: Ну, тридцатью — хорошо. А почему двумя?
Слушатель: Вертикально и горизонтально.
А.С.: Это два способа ее расположения. А сколько положений на самой доске она может занять?
Слушатель: Кучу.
А.С.: Очень-очень много. 30 — это довольно хороший ответ. На самом деле около 50. Давайте исходить из 50. На самом деле не важно, что 30, что 50, даже 10. Потому что после того как мы положили первую такую фишечку, сколько способов остается для второй?
Слушатель: (n − 1).
А.С.: Грубо говоря, 49. Еще, на самом деле, надо учесть порядок, в котором мы положили доминошки. Нужно поделить на два. То есть 50 умножим на 49 и поделим на два.
Дальше кладем третью, четвертую и так далее. И каждый раз домножаем и домножаем — количество вариантов очень быстро растет. (Показывает на доске всё новые варианты.)